Embolism resistance of three boreal conifer species varies with pit structure.
نویسندگان
چکیده
While tracheid size of conifers is often a good proxy of water transport efficiency, correlations between conifer wood structure and transport safety remain poorly understood. It is hypothesized that at least some of the variation in bordered pit and tracheid structure is associated with both transport efficiency and embolism resistance. Stem and root samples from three boreal Pinaceae species were collected to test this hypothesis. Tracheid and pit anatomy were studied using light microscopy as well as scanning and transmission electron microscopy. While tracheid size explained at least 90% of the variation in specific conductivity for stem and root samples, the strongest correlations with embolism resistance occurred at the pit level. Both torus thickness and depth of the pit chamber showed a linear increase with greater vulnerability to cavitation. Greater embolism resistance was correlated with increasing wood density and tracheid wall reinforcement. A thinner torus may be more flexible and better able to seal the pit aperture. The pit chamber depth is proportional to the distance that the margo needs to deflect for pit aspiration.
منابع مشابه
Plasmodesmatal pores in the torus of bordered pit membranes affect cavitation resistance of conifer xylem.
The pit membrane in bordered pits of conifer tracheids is characterized by a porous margo and central thickening (torus), which is traditionally considered to function as an impermeable safety valve against air-seeding. However, electron microscopy based on 33 conifer species, including five families and 19 genera, reveals that pores occur in the torus of 13 of the species studied. The pores ha...
متن کاملLimitation of the Cavitron technique by conifer pit aspiration.
The Cavitron technique facilitates time and material saving for vulnerability analysis. The use of rotors with small diameters leads to high water pressure gradients (DeltaP) across samples, which may cause pit aspiration in conifers. In this study, the effect of pit aspiration on Cavitron measurements was analysed and a modified 'conifer method' was tested which avoids critical (i.e. pit aspir...
متن کاملPit membrane structure is highly variable and accounts for a major resistance to water flow through tracheid pits in stems and roots of two boreal conifer species.
The flow of xylem sap in conifers is strongly dependent on the presence of a low resistance path through bordered pits, particularly through the pores present in the margo of the pit membrane. A computational fluid dynamics approach was taken, solving the Navier-Stokes equation for models based on the geometry of pits observed in tracheids from stems and roots of Picea mariana (black spruce) an...
متن کاملXylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species.
Vulnerability to xylem embolism by freeze-thaw cycles and water stress was quantified in ring-porous (Quercus gambelii Nutt.), diffuse-porous (Populus tremuloides Michx., Betula occidentalis Hook.), and conifer species (Abies lasiocarpa Nutt., Juniperus scopulorum Sarg.). Embolism was measured by its reduction of xylem hydraulic conductivity; it was induced by xylem tension (water-stress respon...
متن کاملDynamic variation in sapwood specific conductivity in six woody species.
Our goals were to quantify how non-embolism-inducing pressure gradients influence trunk sapwood specific conductivity (k(s)) and to compare the impacts of constant and varying pressure gradients on k(s) with KCl and H2O as the perfusion solutions. We studied six woody species (three conifers and three angiosperms) which varied in pit membrane structure, pit size and frequency of axial water tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The New phytologist
دوره 182 3 شماره
صفحات -
تاریخ انتشار 2009